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Introduction
Today’s embedded systems are made up of powerful processing subsystems, 
each of which is uniquely designed to serve a particular function.  In high 
performance embedded systems, each of these subsystems are often fully 
functional processing nodes themselves, and the limiting factor when optimizing 
for the highest system performance often lies in the processor-to-processor 
data paths.  Passing data from processing node to processing node in the 
most efficient way possible, with the lowest latency and highest throughput, 
can often have the greatest impact on system performance. 

Figure 1: Dolphin eXpressWare Software Model
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Curtiss-Wright has partnered with Dolphin Interconnect Solutions to bring their 
eXpressWare PCI Express® (PCIe) fabric software to the embedded VPX world. 
Uniquely optimized to take advantage of hardware features such as DMA and 
multi-core processing, eXpressWare can be used to exploit the highest levels 
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a high performance fabric. In this second part, we present several flexible 
software interfaces provided for applications development, comparing their 
advantages and tradeoffs. Finally, we present performance benchmarks using 
a variety of Curtiss-Wright 3U VPX modules. 
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Dolphin eXpressWare – 
A Solution for PCIe Fabric 
Ease-of-Use
Dolphin Interconnect Solutions has been developing 
processor-to-processor communications solutions for 
many years. Hugely successful with their StarFabric 
technology, they have created eXpressWare, a system 
for processor-to-processor communications using PCIe 
connections to create an extremely fast, flexible, and 
feature rich message and data transfer mechanism. 

Multiple Operating Systems, Multiple 
Processor Architectures
To support the needs of today’s most demanding real-
time systems, Curtiss-Wright has worked with Dolphin 
to extend eXpressWare,  to include Intel® and Power 
Architecture® processors for both Linux® and Wind River® 
VxWorks® operating system. 

With pre-tested and optimized support for Curtiss-Wright 
COTS Single Board Computers (SBCs) and Digital Signal 
Processing (DSP) engines, eXpressWare offers the most 
powerful and flexible high-performance fabric interface 
for today’s real-time embedded processing systems. 

Hiding Hardware and Complex 
Configuration of PCIe Interfaces and 
Switches
As we have learned in Part 1, PCI technology does 
not directly support host-to-host communications, and 
requires complex setup and configuration of PCIe devices 
and switches to enable this functionality. eXpressWare 
software has been designed to hide the complexities of 
PCIe setup, greatly simplifying the setup and configuration 
of these host-to-host architectures.  Curtiss-Wright 
combines eXpressWare with all the predefined PCIe 
switch configurations which allows eXpressWare to 
automatically detected and configure PCIe endpoints 
and transparent or non-transparent ports. In addition, 
eXpressWare will setup message queues and data 
transfer windows, as well as configure and manage data 
transfer resources such as DMA engines. By supporting 
standard software APIs, eXpressWare aims to accelerate 
and simplify software development.

Software Models
With root nodes, endpoints devices, transparent and 
non-transparent ports, programming PCIe fabric 
communications can be difficult at best. Dolphin 
eXpressWare software masks the complex details of 
directly programming PCIe devices while supporting 
high-speed, low-latency, peer-to-peer communications. 

By abstracting the hardware interface, the software 
developer no longer faces the time consuming task of 
managing hardware configurations or mastering different 
networking protocols. As seen in Figure 2, both Dolphin 
specific and open standard software components build 
the Dolphin software stack. By supporting a number of 
common APIs, Dolphin  eXpressWare provides the user 
the flexibility to select the solution that best matches their 
specific application and performance needs.

At the simplest level, an IP stack driver is supported, 
offering developers a simple TCP/IP based software 
interface no different than using regular Ethernet 
communications. Although the least efficient of the 
available interfaces, this model permits customers with 
existing applications using Ethernet communications to 
convert to PCIe based communications will little to no 
application software changes.

eXpressWare also supports a unique implementation of 
the Berkeley Sockets API (BSD) that capitalizes on the PCI 
Express transport to transparently achieve performance 
gains for existing socket-based network applications. 
This interface is called SuperSockets. 

Finally, for the highest possible performance, 
eXpressWare offers an interface called Shared-Memory 
Cluster Interconnect or SISCI. 

SuperSockets
SuperSockets first appeared in 2004 to address time- 
and data-critical applications. For standard socket-based 
inter-process communications, SuperSockets offers 
a safe reliable alternative to the traditional TCP/UDP/
IP protocol stack as well as supporting UDP multicast. 
SuperSockets can accelerate any application that uses 
generic BSD sockets with no configuration changes 
since the host names will remain the same. Simply by 
moving data directly using PCIe instead of Ethernet will 
typically reduce the minimum latency by a factor of 10 
or more. For example, the average latency across the a 
number of Curtiss-Wright SBC and DSP modules was 
1.60 microseconds, with some transfers latencies as 
low as 1.18 microseconds.  In addition to offering lower 
effective latency, SuperSockets also yield high message 
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processing rates. Because of the low protocol overhead 
of SuperSockets on both the CPU and host adapter, 
SuperSockets ensures low CPU utilization and good 
scalability as the number of processing cores increases. 
If your application requires real-time performance, 
SuperSockets has a mode that does not trigger interrupts 
during communications, which promotes the greatest 
timing predictability and the lowest achievable overhead. 

Why are SuperSockets so fast? The SuperSockets 
protocol streamlines the transfer with no need to lock 
down or register memory. Also, consider that small 
messages use basic CPU instructions, and that a single 
store instruction can send 8 bytes of data with a raw 
worst-case latency of approximately 70 nanoseconds.  

For increased fault tolerance and speed, SuperSockets 
support multiple host adapters per host. This commitment 
to speed included local loopback acceleration of up to 10 
times faster than the standard Linux loopback device.

SuperSockets supports all these valuable features in 
both user and kernel space applications. SuperSockets 
can also accelerate kernel services that employ sockets; 
however, these services will need to be modified to take 
advantage of SuperSockets. Typically, implemented 
by either re-configuring the service or patching and 
recompiling the code, this trivial modification will specify a 
different address range when opening sockets. 

Delivered as a Linux independent binary object, the 
SuperSockets code does not interface with, or use, any 
Linux functionality directly. Drivers that interface directly 
with Linux are compiled from source during installation to 
match the running kernel, and the SuperSockets package 
consists of both kernel modules and a user-space library. 

The implementation of SuperSockets at the kernel level 
ensures full compatibility with the TCP/UDP/IP and RDS 
datagram sockets that already exist in the operating 
systems. Operating between the unmodified binary of 
the user’s applications and the operating system, the 
explicitly, preloaded, user space SuperSockets library 
intercepts any socket-related function calls. 

Automatic Fail-Over
Depending on the system or the user’s configuration, if 
set to override the system configuration, the library will 
pass the function call to either the SuperSockets or 
the standard socket implementation. With the selection 
of SuperSockets, the kernel module then performs 
the transfer using the PCIe interconnect. If a network 
problem is detected, SuperSockets will automatically 
and transparently switch to the standard socket 

implementation even while the socket is passing data. 
When the PCIe connection is restored, it will switch back 
to using SuperSockets. In addition, SuperSockets will 
revert to the Ethernet port when connecting to nodes 
outside of the cluster.

SISCI
The EU-funded Esprit Project 23714, “Standard Software 
Infrastructures for SCI-based Parallel Systems” created 
the Software Infrastructure for Shared-Memory Cluster 
Interconnect (SISCI) API. The purpose of this project was 
to encourage the development of software for parallel 
processing on clusters of workstations connected by 
a fast “memory mapped” interconnect initially called 
the Scalable Coherent Interface (SCI). The SISCI API 
supports data transfers between CPU memories and IO 
devices using either distributed remote memory access 
or Direct Memory Access (DMA). In addition, users can 
trigger remote interrupts as well as catch and handle 
events from the underlying interconnect. The SISCI API 
protects system security by preventing software from 
acting badly and accessing remote memory outside of 
exported SISCI segments. Without adding overhead 
or performance penalties, the user can write portable 
applications to communicate across both little and big 
endian systems. Like SuperSockets, the SISCI library and 
tools are available in both user and kernel space.

Understanding of the “resource” concept is essential to 
successfully using the SISCI API. For example, a virtual 
device is a resource, a memory segment is a resource, 
a DMA queue is a resource, etc., and a resource can 
depend on another resource. A descriptor collects the 
properties that described a resource. While the user does 
not have direct access to the descriptor, the user controls 
the descriptor handler that are used in conjunction with 
the API functions. Fortunately, the naming conventions 
for the descriptors and handles relate to the name of the 
underlying resource.  For example, the resource of a local 
memory segment has a descriptor named “sci_local_
segment” with a matching “sci_local_segment_t” handle 
to as local segment resource.

Memory
Safely accessing memory physically resident on another 
machine is the fundamental characteristic and strength of 
the SISCI software. When remote memory is mapped into 
addressable space of a local process, the remote memory 
appears to be local and any data transfer becomes as 
simple as a normal “memcpy()”. This transfer method 
is called Programmed I/O (PIO) and the “memcpy()” 
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equivalent function is implemented as a sequence of CPU 
load and store instructions that sends and retrieves data 
from remote memory. PIO has the lowest overhead and 
lowest latency of any of the SISCI methods for accessing 
remote memory, but the drawback is that the CPU is 
consumed reading and writing data to and from remote 
memory. For example, on one set of Curtiss-Wright test 
boards connected via PCIe, the one-way latency was 
measured in the range from 0.54 microseconds to 0.7 
microseconds.

Instead of allocating memory using standard functions 
such as “malloc()”, a memory segment on the local host is 
allocated with a custom function because the driver must 
be aware of the segment and its associated parameters. By 
using the custom functions, implementation requirements 
such as the memory being non-swappable and physically 
contiguous are hidden from the user, which helps ensures 
portability. Upon successful memory allocation of the local 
segment, the function returns the local segment resource, 
which includes a segment id, to the user. Let us assume 
that one local segment memory has been allocated on 
a node designated at the receiver node. Using the local 
segment resource, the receiver makes that block of 
memory available to the rest of the system. Now, another 
node, the sender node, wants to access that memory 
segment on the receiver node. The sender node’s first 
step is to “connect” to the remote memory segment on 
the receiver node. A connect request is sent containing 
the receiver’s node id and the id of the memory segment 
as well as other parameters. The request returns a handle 
to remote segment resource. At this point, the size of the 
remote segment can be determined with another function 
call. Once a valid resource handle is available, the memory 
segment can be mapped into the address space of your 
process and accessed like regular memory (i.e. pointer 
operations).

DMA
As an alternative method to the PIO data transfers, the 
SISCI API also provides for Direct Memory Access (DMA) 
transfers when it is available on your hardware. DMA 
functionality is only implemented on certain hardware 
platforms, such as the Curtiss-Wright CHAMP-XD1 (VPX3-
482) and Power Architecture SBCs (VPX3-131/133). The 
user’s application defines the desired data transfers and 
the CPU in turn passes the information to the DMA engine. 
This frees the CPU to continue processing in parallel with 
the transfer, or the CPU can just wait for the transfer to 
complete. If the CPU continues processing, the application 
can specify a callback function to be invoked when the 

transfer is complete. DMA operations have a high startup 
cost compared to PIO and should only be invoked for 
larger data movements. Another option would be to join 
several DMA transfers together to amortize the overhead. 
Sometimes, PIO and DMA operations can work together 
for maximum application benefits and performance. DMA 
programming requires the same code sequence to setup 
local and remote memory segments as described for PIO 
transfers. 

So how do you know when the DMA transfer is complete? 
For synchronous behavior, the CPU can just spin and wait. 
Other than wasting precious CPU time, the transfer could 
error and the CPU could be waiting forever. To avoid this 
lockup condition, simply set a timeout value as part of 
the call. Instead of waiting for the completion of the DMA 
transfer, the CPU can poll at selected intervals until the 
transfers completes or returns an error. Using the DMA 
queue, the application can also start multiple transfers 
from one API call. In addition, the SISCI API provides 
functionality for Direct Remote DMA (RDMA).

Interrupts
Interrupts notify a remote application when a predefined 
condition occurs. Like memory segments, a SISCI interrupt 
is a resource and is allocated on one node and connected 
to, and used from, one another. These interrupts can also 
pass data as part of the interrupt; however, interrupts 
with data normally consume more resources and incur 
more latency. To start, the local node allocates, initializes 
and makes available an interrupt resource. By default, 
the create interrupt function returns an identifier to the 
interrupt that the remote application must use to trigger 
the interrupt. The local node must share the identifier with 
the remote node by some method, usually by shared 
memory. To avoid the extra step of passing the identifier, 
the local node declares a constant interrupt number that 
is passed to the interrupt creation routine. If using this 
method, the user must ensure the same interrupt number 
is defined on both the send and receive nodes. Similar to 
memory segments, the remote node has to connect to the 
remote interrupt and receive the handle to the interrupt 
resource. Once the remote node has the handle, it can 
trigger the interrupt as needed. Given that the application 
on the local is waiting or has set a callback, the interrupt 
will be handled; otherwise, the interrupt will be lost. An 
error occurs when the timeout expires, or if some other 
thread removes the interrupt.
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Events and Callbacks
Hardware, drivers, and even the application can generate 
events. Some examples of an event include a cable 
disconnection, a node failure resulting in the disappearance 
of a remote segment, the completion of a DMA transfer 
or an interrupt. The SISCI driver handles some events 
directly while forwarding other events to the application, 
which makes the choice to ignore or handle them. As 
mentioned above, the application can block an event 
or setup a callback. To setup a callback, the mechanics 
are the same whether the function is creating a local 
memory segment, connecting a remote section, starting 
DMA transfer or creating an interrupt. In all instances, 
the setup function has parameters that include a flag 
indicating the intention to use the callback mechanism, 
a pointer to the callback function and the arguments for 
the callback function. Defining the argument parameter 
as “void*” allows anything from nothing, to a single value 
to a pointer to a larger data structure to be passed to it.

Multicast
Multicast, sometimes referred to as reflective memory, 
transfers the same data to multiple remote nodes.  Since 
multicast is implemented in hardware, no software 
overhead is incurred. Multicasting of the data buffers can 
use PIO, DMA, or direct data moves from PCIe devices, 
such as GPUs and FPGAs. The PCIe multicast uses 
main system memory, which is considerably faster than 
specialized device memory.  Because main memory is 
cached, data updates from remote nodes will automatically 
invalidate the CPU’s cache, which helpfully guarantees 
data consistency. The ability to use up to four independent 
reflective memory segments, and the selection of which 
nodes that will receive the multicast data, are a few of the 
strengths of Dolphin’s implementation. 

Another major differentiator is the utilization of two different 
addresses, one for reading and another for writing. 
The PCIe multicast process distributes the entire PCIe 
bandwidth simultaneously to all remote nodes. Ping-pong 
testing performed on a 2-8 nodes of different Curtiss-
Wright boards resulted in an average 1.98 microseconds 
latency, along with very low jitter. One way latency for 
three nodes measured at just 0.99 microseconds, with 
eight nodes resulting in 1.27 microsecond latency. The 
timing was recorded when all the remote nodes replied 
with an ACK after receiving the data.

Note: multicast is only supported on systems configured 
with a central switch. 

Remote Peer-to-Peer
PCIe peer-to-peer (P2P) communications enables regular 
PCIe devices to perform direct data transfers without 
using main memory as temporary storage and without 
using the CPU to move the data. P2P reduces latency 
and communication overhead and typically benefits 
GPUs, FPGA, and high-speed data input devices. The 
SISCI API simplifies the setup and management of P2P 
transfers, and the P2P functionality can be combined 
with the reflective memory functionality to multicast data 
to multiple devices transparently. 

Each hardware resource on the PCIe fabric must be 
mapped to the controlling application with the appropriate 
SISCI API functions. First, the user should specify the 
physical address and the number of bytes inside the 
PCIe device that will form the SISCI segment.  After the 
segment is prepared, a remote host can connect and 
map the physical memory.  To enable a local PCIe device 
to access a remote SISCI memory or remote device 
segment, the code must retrieve the corresponding I/O 
address in the local address space. This information will 
be available via a function call after the remote segment 
has been connected and mapped. To ensure the master 
access is passing through the required NT mapping 
function, the PCIe device must register as an approved 
PCIe master. For example, an FPGA device that is setup 
as a PCIe master can direct memory using the address 
provided.

Picking the right API: Tradeoffs and 
Performance Considerations
For applications that are already written using socket 
communications, the use of TCP/IP sockets represents 
the lowest risk and shortest software development effort. 
This API incurs the highest software overhead, and results 
in the lowest performance of the available eXpressWare 
software APIs.  Systems moving from Ethernet to PCIe 
communications will still benefit from an increase in overall 
performance.

SuperSockets increases performance dramatically. 
Although some software rework will be required, most well 
designed software can be adapted to use SuperSockets 
with relative ease, and the performance benefits will be 
seen quickly.

The highest performance API is the SISCI interface. New 
applications using PCIe fabric communications should be 
written with the SISCI API, which will achieve the highest 
possible performance of all eXpressWare APIs. 
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Curtiss-Wright PCIe Fabric 
Implementation with Dolphin 
eXpressWare
Performance Considerations

PCIe speeds, Lane Widths, and Throughput
Although there are many combinations of PCIe 
connections, the most common and practical connections 
for a 3U VPX module are Gen2 x4 and x8 lane, and Gen3 
x4 and x8 lane.In this section, these are the PCIe transfer 
speeds and lane widths used for benchmark examples. 

Transferring Data: Simple R/W vs. DMA
Endpoints connected with PCIe are configured with 
memory addressable windows, permitting simple 
communications using simple processor read and write 
operations.  A processor can write data directly to the 
PCIe mapped memory address, and endpoint device 
receives the data via PCIe transactions.  

This form of communications is sometimes called 
Processor I/O or PIO mode. It is extremely simple to write 
software using this data passing mechanism within an 
application, however it will clearly use processor CPU 
cycles. If the processor has DMA capabilities, the DMA 
engine can be used to transfer data across the PCIe 
bus with block transfer read/write operations, freeing up 
precious CPU cycles.  

Intel processors have a unique feature called PCIe 
write combining, where sequential write operations 
are combined into a single PCIe burst write operation. 
This results in extremely high bus utilization and data 
throughput. 

Optimization
The eXpressWare software has been optimized to operate 
in PIO or in DMA mode, depending on the type and size 
of data being transferred. For small size messages, PIO 
mode is extremely efficient, with the lowest possible 
latency and fast data transfers.  For large block data 
transfers, the DMA mode of operation can be used to 
free up CPU resources. 

eXpressWare is smart enough to select PIO or DMA 
modes of operation dynamically, making the best use of 
hardware resources for every type of data transaction. 
Small data transactions would be inefficient if extra cycles 
are spent setting up DMA operations.  In many case, 
especially for short messages, the entire message can 
be transferred with simple PIO operations before a single 
DMA cycle would have been executed.  

Supported Curtiss-Wright Modules
The following Curtiss-Wright modules are presently 
supported by the eXpressWare PCIe Fabric Software:

	+ VPX3-1220 = Intel Xeon® 7th Gen “Kaby Lake” SBC

	+ VPX3-1259 = Intel Core i7 5th Gen “Broadwell” SBC

	+ VPX3-1260 = Intel Xeon 8th Gen “Coffee Lake” SBC

	+ VPX3-131 = NXP P4080 SBC

	+ VPX3-133 = NXP T2080 SBC

	+ VPX3-482 = CHAMP-XD1 Intel Xeon D DSP Engine

	+ XMC-121 = Intel Xeon 7th Gen “Kaby Lake” XMC 
Mezzanine

The eXpressWare PCIe Fabric Software has been 
optimized to make use of available hardware resources 
on each of these modules. The VPX3-1220, VPX3-1259, 
and VPX3-1260 with Intel Core i7 and Xeon processors 
do not have high performance DMA capabilities, and 
thus operate in PIO mode exclusively. On these modules, 
eXpressWare has been optimized to leverage Intel’s PCIe 
write combining to achieves the highest possible PCIe 
bus utilization. The VPX3-131/133 and CHAMP-XD1 
modules do support DMA operations, and automatically 
select PIO or DMA operations for each transaction to 
maximize throughput and minimize processor overhead.

Performance - Data Throughput and 
Latency
Curtiss-Wright has performed extensive testing and 
benchmarks with the eXpressWare PCIe Fabric software 
under various combinations of modules and operating 
systems using both PIO and DMA operations. This section 
summarizes some of these benchmarks.
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CHAMP-XD1 to CHAMP-XD1 under Linux
Figure 2 shows the performance of two CHAMP-XD1 Intel Xeon-D DSPs via a 4-lane PCIe Gen3 interface which sports 
a maximum theoretical bandwidth of 3.94 GBps. For this test, both XD1s were running Linux and the data transfers 
tested use the PIO mode of operation for comparison to the SBCs such as the VXP3-1259. As expected, the shape 
of the graphs are very similar with the increase of performance due to Gen3 interface noted.

Figure 3: VPX3-1259 to VPX3-1259 under Linux, PIO Mode Performance

VPX3-1259 to VPX3-1259 PIO mode, Gen2 x4, Linux
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Figure 2: CHAMP-XD1 to CHAMP-XD1 under Linux, PIO Mode Performance
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VPX3-1259 to VPX3-1259 under Linux
Figure 3 shows the performance of two VPX3-1259 Intel Core i7 Broadwell SBCs connected with a 4-lane PCIe Gen2 
interface, which has a maximum theoretical bandwidth of 2.0 GBps.  In this benchmark, both SBCs are running Linux. 
All data transfers are via PIO mode of operation, as a high performance DMA engine is not available in the Core i7 
chipset. 
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Data throughput and latency are shown, and as expected, the SISCI API exhibits the highest performance and lowest 
latency of all software APIs. Throughput quickly reaches a peak of 1.45 GBps at a data transfer size of 256 bytes, 
representing 73% of theoretical PCIe bus performance. Larger data transfer sizes do not achieve higher throughput, 
as the PCIe bus itself limits transactions to 128 or 256 bytes (chipset dependent), so even larger transfers are limited 
by the PCIe bus transaction process. SuperSocket protocol throughput is not as efficient as the SISCI protocol, 
and standard TCP socket throughput is even lower, reaching a maximum of only 0.84 GBps even for large 64K size 
packets. This is due to the Linux software stack that handles regular sockets, which is not as efficient as the SISCI or 
SuperSocket drivers. Message latency is also shown. Using SISCI, a messages of 1 KB has a latency of approximately 
0.72 microseconds. SuperSocket latency is slightly higher at 1.07 microseconds and the SuperSocket PingPong 
latency, transferring messages in both directions, makes the round trip in just 4.46 microseconds. Regular TCP socket 
interface latency is much higher for all size packets, primarily due to socket software stack execution, requiring almost 
8 microseconds for even the shortest of messages. 

VPX3-1259 to VPX3-1259 under VxWorks
Figure 4 shows the same two VPX3-1259 SBCs connected with the same 4-lane PCIe Gen2 interface, but this 
time running the VxWorks operating system. Data throughput peaks at 1.54 GBps, or 77% of theoretical PCIe bus 
performance, slightly higher than the same configuration under Linux. This is due to the better real-time performance of 
VxWorks over Linux. Latency is also shown, with higher performance (lower latency) than Linux. A 256 byte messages 
transfers in as low as 0.18 microseconds.

Figure 4: VPX3-1259 to VPX3-1259 under VxWorks, PIO Mode Performance
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VPX3-1259 to VPX3-1259 under VxWorks, PCIe Lane Widths and Speeds
The effects of wider PCIe lane widths (ie: 8-lane .vs. 4-lane) and higher PCIe transfer speeds (ie: Gen3 .vs. Gen2) are 
shown in Figure 5. All these benchmarks are using the SISCI API under VxWorks. 

As expected, wider lane widths and higher PCIe bus speeds produce better results. Using an 8-lane PCIe Gen3 
interface, the two SBCs achieve data transfer rates of up to 5.62 GBps, or 71% of the theoretical 7.88 GBps bandwidth 
of this PCIe connection. Interestingly, for data transfers under 128 bytes, all three configurations have the same data 
throughput. This is due to the way the Intel PCIe controller stores up PCIe data transactions and then bursts data 
onto the PCIe bus. Data throughput of a 4-lane Gen3 and an 8-lane Gen2 interface are almost identical, as is their 
theoretical maximums. Similarly, latency is almost identical for transfer lengths up to 128 bytes, and then the effect of 
faster data transfers begins to show with larger data transfers. 

Figure 5: VPX3-1259 to VPX3-1259 under VxWorks, Effect of PCIe Lane Widths and Speeds

VPX3-1259 to VPX3-1259 PIO mode, VxWorks7, Various PCIe
Lanes & Speeds

9000

7000

4000

1000

8000

5000

6000

3000

2000

0

Segment Size
64328 164 128 256 512 1024 2048 4096 8192 16384 32768 65536

Segment Size
4 168 32 128 512 2048 4096256 102464

VPX3-1259 to VPX3-1259 PIO mode, VxWorks7, Various PCIe
Lanes & Speeds

3.5

2.5

1.5

0.5

3

2

1

0

La
te

nc
y 

(u
S

)

8xGen3

4xGen2

8xGen2

4xGen3

http://www.curtisswrightds.com
http://curtisswrightds.com
https://www.curtisswrightds.com/company/


10

CURTISSWRIGHTDS.COM

Figure 6: VPX3-133 to VPX3-133 under Linux, DMA Mode Performance
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VPX3-133 to VPX3-133 with DMA under Linux
Figure 6 shows two VPX3-133 Power Architecture T2080 SBCs communicating, again using 4-lane PCIe Gen2 
interfaces with maximum theoretical performance of 2.0 GB/s. DMA performance is slightly higher than the Intel Core 
i7 (1258) PIO performance, hitting a peak of 1.54 GBps (77%). This demonstrates that PIO and DMA modes both 
achieve similar throughput, thus we can conclude the maximum throughput is not limited not by the processor transfer 
mechanism.  Not shown is the CPU overhead for these two modes of data transfer, where we would see the PIO mode 
of the Intel Core i7 consuming CPU cycles, and the DMA mode of the Power Architecture T2080 leaves the CPU sitting 
idle, free to perform other tasks or waiting for DMA operations to be complete. 

Latency with these Power Architecture SBCs is slightly higher than the Intel Core i7 SBCs, taking 1.75 microseconds 
to push a 256 byte message to the other host, most likely due to the lower overall CPU performance of these Power 
Architecture processors. 
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Summary
Rugged embedded systems depend on high performance fabrics to reduce 
latency in data transfer times. In this second part of our Dolphin white paper 
series, we discussed several different software interfaces provided for applications 
development, compared their advantages and tradeoffs.  Dolphin’s support of 
a number of common software APIs offers high-speed, low-latency, peer-to-
peer communications while masking the complex details of programming PCIe 
devices. Curtiss-Wright’s partnership with Dolphin provides our customers 
with access to all these benefits on our embedded hardware, enabling them 
the flexibility to select a solution tailored to their own unique application and 
performance needs. In part three of this series, we will take an in-depth look at 
device sharing and multicast applications.
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